I've noticed an odd behaviour in the way runmlwin/MLwiN orders and labels the variance component estimates in a multivariate model where one outcome is continuous and normally distributed whereas the other outcome is binary and modelled using the probit link.
If I estimate a bivariate model with two continuous outcomes the variance components are labelled as expected. var(cons_1) refers to the random effect(s) on the constant in equation 1, var(cons_2) refers to the random effect(s) in the second equation. See example below.
Code: Select all
runmlwin (binary cons, eq(1)) (continuous cons, eq(2)), ///
> level2(cluster: (cons, eq(1))(cons, eq(2))) level1(individual: (cons, eq(1))(cons,eq(2))) ///
> /* discrete(distribution(binomial normal) link(logit) denominator(cons cons)) */ ///
> nopause cor batch mlwinpath("C:\Program Files (x86)\MLwiN v2.28\x64\mlnscript.exe") maxiterations(150)
--- Begin MLwiN error log ---
MLN - Software for N-level analysis. Thu Oct 03 11:52:09 2013
C:\Users\ng526\AppData\Local\Temp\ST_02000002.tmp
C:\Users\ng526\AppData\Local\Temp\ST_02000006.tmp
--- End MLwiN error log ---
MLwiN 2.26 multilevel model Number of obs = 99597
Multivariate response model
Estimation algorithm: IGLS
-----------------------------------------------------------
| No. of Observations per Group
Level Variable | Groups Minimum Average Maximum
----------------+------------------------------------------
cluster | 286 1 348.2 2321
-----------------------------------------------------------
Run time (seconds) = 29.14
Number of iterations = 4
Log likelihood = -373669.16
Deviance = 747338.31
------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
binary |
cons_1 | .7302724 .0042698 171.03 0.000 .7219036 .7386411
-------------+----------------------------------------------------------------
continuous |
cons_2 | 5.385433 .0807643 66.68 0.000 5.227138 5.543728
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
Level 2: cluster |
var(cons_1) | .0036802 .0004087 .0028791 .0044813
corr(cons_1,cons_2) | -.6049433 .0501553 -.7032458 -.5066407
var(cons_2) | 1.52018 .1504653 1.225273 1.815086
-----------------------------+------------------------------------------------
Level 1: individual |
var(cons_1) | .1994257 .0008948 .197672 .2011795
corr(cons_1,cons_2) | -.1043134 .0031382 -.1104642 -.0981626
var(cons_2) | 31.2086 .1400372 30.93413 31.48307
------------------------------------------------------------------------------
I think this is a bug. Or am I missing something?
Code: Select all
runmlwin (binary cons, eq(1)) (continuous cons, eq(2)), ///
> level2(cluster: (cons, eq(1))(cons, eq(2))) level1(individual: (cons, eq(1))(cons,eq(2))) ///
> discrete(distribution(binomial normal) link(logit) denominator(cons cons)) ///
> nopause cor batch mlwinpath("C:\Program Files (x86)\MLwiN v2.28\x64\mlnscript.exe") maxiterations(150)
--- Begin MLwiN error log ---
MLN - Software for N-level analysis. Thu Oct 03 11:52:39 2013
C:\Users\ng526\AppData\Local\Temp\ST_02000002.tmp
C:\Program Files (x86)\MLwiN v2.28\x64\..\discrete\pre
C:\Program Files (x86)\MLwiN v2.28\x64\..\discrete\errchk
C:\Program Files (x86)\MLwiN v2.28\x64\..\discrete\pre_0
C:\Program Files (x86)\MLwiN v2.28\x64\..\discrete\nobvar
C:\Program Files (x86)\MLwiN v2.28\x64\..\discrete\post
C:\Program Files (x86)\MLwiN v2.28\x64\..\discrete\post_0
C:\Program Files (x86)\MLwiN v2.28\x64\..\discrete\pre
C:\Program Files (x86)\MLwiN v2.28\x64\..\discrete\errchk
C:\Program Files (x86)\MLwiN v2.28\x64\..\discrete\bvar
C:\Program Files (x86)\MLwiN v2.28\x64\..\discrete\post
C:\Program Files (x86)\MLwiN v2.28\x64\..\discrete\pre
C:\Program Files (x86)\MLwiN v2.28\x64\..\discrete\errchk
C:\Program Files (x86)\MLwiN v2.28\x64\..\discrete\bvar
C:\Program Files (x86)\MLwiN v2.28\x64\..\discrete\post
C:\Program Files (x86)\MLwiN v2.28\x64\..\discrete\pre
C:\Program Files (x86)\MLwiN v2.28\x64\..\discrete\errchk
C:\Program Files (x86)\MLwiN v2.28\x64\..\discrete\bvar
C:\Program Files (x86)\MLwiN v2.28\x64\..\discrete\post
C:\Program Files (x86)\MLwiN v2.28\x64\..\discrete\pre
C:\Program Files (x86)\MLwiN v2.28\x64\..\discrete\errchk
C:\Program Files (x86)\MLwiN v2.28\x64\..\discrete\bvar
C:\Program Files (x86)\MLwiN v2.28\x64\..\discrete\post
C:\Users\ng526\AppData\Local\Temp\ST_02000006.tmp
--- End MLwiN error log ---
MLwiN 2.26 multilevel model Number of obs = 99597
Multivariate response model
Estimation algorithm: IGLS, MQL1
-----------------------------------------------------------
| No. of Observations per Group
Level Variable | Groups Minimum Average Maximum
----------------+------------------------------------------
cluster | 286 1 348.2 2321
-----------------------------------------------------------
Run time (seconds) = 35.22
Number of iterations = 5
------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
binary |
cons_1 | .9962659 .0216978 45.92 0.000 .953739 1.038793
-------------+----------------------------------------------------------------
continuous |
cons_2 | 5.385259 .080767 66.68 0.000 5.226958 5.543559
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
Level 2: cluster |
var(cons_1) | .0953512 .0105829 .074609 .1160933
corr(cons_1,cons_2) | -.6043977 .0501581 -.7027058 -.5060897
var(cons_2) | 1.520418 .1504496 1.225543 1.815294
-----------------------------+------------------------------------------------
Level 1: individual |
var(bcons_1) | 31.20439 .1400105 30.92998 31.47881
corr(bcons_1,cons_2) | -.1036713 .0031302 -.1098063 -.0975363
var(cons_2) | 1 0 1 1
------------------------------------------------------------------------------