With MLwiN, I get the following results:
Code: Select all
	       model	S.E.	ESS
Response	deaths		
			
Fixed Part			
cons	         -2.227	0.028	1159
(age-gm)	  0.048	0.001	511
(age-gm)^2     0.001	0.000	18439
(year-gm)	 -0.031	0.001	512
			
Random Part			
Level: birth_year			
Var(cons)	  0.044	0.006	910595
Level: year			
Var(cons)	  0.031	0.005	830212
Level: c1			
Var(cons)			
Var(bcons.1) 1.000	0.000	0
			
Units: birth_year	101		
Units: year	95		
Units: c1	6163		
Estimation: 	MCMC		
DIC: 	3558279.237		
pD: 	195.819		
Burnin: 	500000		
Chain Length: 	1000000		
Thinning: 	1Code: Select all
-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- 
MLwiN (version: 3.01)  multilevel model (Poisson) 
             N min     mean max N_complete min_complete mean_complete max_complete
year        95  23 64.87368  91         95           23      64.87368           91
birth_year 101  17 61.01980  91        101           17      61.01980           91
Estimation algorithm:  MCMC      Cross-classified              Elapsed time : 1729.97s 
Number of obs:  6163 (from total 6163)          Number of iter.: 1e+06  Chains: 1  Burn-in: 5e+05 
Bayesian Deviance Information Criterion (DIC)
Dbar      D(thetabar)    pD      DIC
3558095.934 3557900.101 195.833    3558291.767 
--------------------------------------------------------------------------------------------------- 
The model formula:
log(deaths) ~ 1 + offset(logexp) + agec + agec2 + yearc + (1 | 
    year) + (1 | birth_year)
Level 3: year     Level 2: birth_year     Level 1: l1id      
--------------------------------------------------------------------------------------------------- 
The fixed part estimates:  
               Coef.   Std. Err.        z     Pr(>|z|)       [95% Cred.   Interval]     ESS 
Intercept   -2.20986     0.02754   -80.25            0  ***    -2.26254    -2.15503     471 
agec         0.04807     0.00060    80.17            0  ***     0.04703     0.04927      20 
agec2        0.00122     0.00000  2277.38            0  ***     0.00122     0.00122   16221 
yearc       -0.03163     0.00089   -35.61   1.063e-277  ***    -0.03339    -0.02993     728 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
--------------------------------------------------------------------------------------------------- 
The random part estimates at the year level: 
                  Coef.   Std. Err.   [95% Cred.   Interval]      ESS 
var_Intercept   0.03078     0.00462      0.02303     0.04107   954338 
--------------------------------------------------------------------------------------------------- 
The random part estimates at the birth_year level: 
                  Coef.   Std. Err.   [95% Cred.   Interval]      ESS 
var_Intercept   0.04389     0.00639      0.03311     0.05806   178671 
--------------------------------------------------------------------------------------------------- 
The random part estimates at the l1id level: 
                Coef.   Std. Err.   [95% Cred.   Interval]     ESS 
var_bcons_1   1.00000     0.00000      1.00000     1.00000   1e+06 
-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- Code: Select all
model1 <- runMLwiN(log(deaths) ~ 1 + offset(logexp) + agec + agec2 +
  yearc + (1 | year) + (1 | birth_year), D= "Poisson",
  estoptions = list(xc = TRUE, EstM = 1,
      mcmcOptions = list(hcen = 3),
      mcmcMeth = list(burnin=500000, iterations=1000000)
      ),
  data=UK_fem2)The variables are all the same (and centred the same), both models are cross-classified and have hierarchical centring specified. Both have starting values from IGLS and long burn ins (500k) and chains (1mil). I haven't messed with the default priors. Is there a default that might be different with one and not the other?
Thanks!