runmlwin has encountered an error importing the model...
Posted: Fri Mar 16, 2012 2:52 pm
Hi
My do file stops dispite being done 'noisily'. This has happened 3 times out of 560 combinations of 3 age variables.
This is the main part of the do file:
gen fp1=age_yr
gen fp2=age_yr^2
gen fp3=age_yr^3
gen fpmh=age_yr^-0.5
gen fph=age_yr^0.5
gen fp0=log(age_yr)
gen fpm1=age_yr^-1
gen fpm2=age_yr^-2
gen fpm20=fpm2*fp0
gen fpm10=fpm1*fp0
gen fpmh0=fpmh*fp0
gen fp00=fp0*fp0
gen fph0=fph*fp0
gen fp10=fp1*fp0
gen fp20=fp2*fp0
gen fp30=fp3*fp0
tab treatment, gen(case)
global MLwiN_path C:\Program Files\MLwiN v2.24\mlwin.exe
*********************************************************************
*2. Models with age in occ level- treatment interacts with the 3 vars
**********************************************************************
*Males
tempname memhold
postfile `memhold' str15 var1 str15 var2 str15 var3 loglike deviance converge iter cons coef1 coef2 coef3 using 3boys_fp_loglike_years.dta, replace
/* run fp models */
forvalues i = 354/560{
mata st_local("var1", varcombs[1,`i'])
mata st_local("var2", varcombs[2,`i'])
mata st_local("var3", varcombs[3,`i'])
di `i' "~" "var1: `var1'", _col(15) "var2: `var2'", _col(30) "var3: `var3'"
sort clinic id time
capture noisily runmlwin bmi cons `var1' `var2' `var3' if sex==2, ///
level1 (time: cons ageweeks, diagonal reset(none)) ///
level2 (id: cons `var1' `var2' `var3', reset(none)) ///
level3 (clinic: cons ) ///
nopause maxiterations(100) batch
post `memhold' ("`var1'") ("`var2'") ("`var3'") (e(ll)) (e(deviance)) (e(converged)) (e(iterations)) (_b[cons]) (_b[`var1']) (_b[`var2']) (_b[`var3'])
}
This is the Stata message:
runmlwin has encountered an error importing the model results from MLwiN. Check that the model has run properly in MLwiN.
[fph0] not found
post: above message corresponds to expression 11, variable coef3
r(111);
These are the models which fail:
Model 115
fp2 =age_yr^2
fp3=age_yr^3
fph0= age_yr^0.5* log(age_yr)
Model 353
fph=age_yr^0.5
fpm1=age_yr^-1
fpm10= age_yr^-1* log(age_yr)
Model 504
fpm2=age_yr^-2
fp20= age_yr^2* log(age_yr)
fp30= age_yr^3* log(age_yr)
If I run these particular models in MLWin this is what I see: I'd be grateful for any help.
Many thanks
Rita
My do file stops dispite being done 'noisily'. This has happened 3 times out of 560 combinations of 3 age variables.
This is the main part of the do file:
gen fp1=age_yr
gen fp2=age_yr^2
gen fp3=age_yr^3
gen fpmh=age_yr^-0.5
gen fph=age_yr^0.5
gen fp0=log(age_yr)
gen fpm1=age_yr^-1
gen fpm2=age_yr^-2
gen fpm20=fpm2*fp0
gen fpm10=fpm1*fp0
gen fpmh0=fpmh*fp0
gen fp00=fp0*fp0
gen fph0=fph*fp0
gen fp10=fp1*fp0
gen fp20=fp2*fp0
gen fp30=fp3*fp0
tab treatment, gen(case)
global MLwiN_path C:\Program Files\MLwiN v2.24\mlwin.exe
*********************************************************************
*2. Models with age in occ level- treatment interacts with the 3 vars
**********************************************************************
*Males
tempname memhold
postfile `memhold' str15 var1 str15 var2 str15 var3 loglike deviance converge iter cons coef1 coef2 coef3 using 3boys_fp_loglike_years.dta, replace
/* run fp models */
forvalues i = 354/560{
mata st_local("var1", varcombs[1,`i'])
mata st_local("var2", varcombs[2,`i'])
mata st_local("var3", varcombs[3,`i'])
di `i' "~" "var1: `var1'", _col(15) "var2: `var2'", _col(30) "var3: `var3'"
sort clinic id time
capture noisily runmlwin bmi cons `var1' `var2' `var3' if sex==2, ///
level1 (time: cons ageweeks, diagonal reset(none)) ///
level2 (id: cons `var1' `var2' `var3', reset(none)) ///
level3 (clinic: cons ) ///
nopause maxiterations(100) batch
post `memhold' ("`var1'") ("`var2'") ("`var3'") (e(ll)) (e(deviance)) (e(converged)) (e(iterations)) (_b[cons]) (_b[`var1']) (_b[`var2']) (_b[`var3'])
}
This is the Stata message:
runmlwin has encountered an error importing the model results from MLwiN. Check that the model has run properly in MLwiN.
[fph0] not found
post: above message corresponds to expression 11, variable coef3
r(111);
These are the models which fail:
Model 115
fp2 =age_yr^2
fp3=age_yr^3
fph0= age_yr^0.5* log(age_yr)
Model 353
fph=age_yr^0.5
fpm1=age_yr^-1
fpm10= age_yr^-1* log(age_yr)
Model 504
fpm2=age_yr^-2
fp20= age_yr^2* log(age_yr)
fp30= age_yr^3* log(age_yr)
If I run these particular models in MLWin this is what I see: I'd be grateful for any help.
Many thanks
Rita